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A formulation of the linearized boundary-value problem of the stability of a deformation process with respect to small perturbations 
of the hardening function (of the scalar constitutive relation of the material) is presented. The characteristic vector relations of 
the medium are assumed to be linear. The occurrence of rigid zones in the domain of the solid and the change in their boundaries 
in the perturbed motion are taken into account. A perfect rigid plastic deformation and the flow of a Newtonian fluid are considered 
explicitly as the basic flow. In the latter case, the equation of the asymptotic boundary of the rigid zone, which appears when 
there is a small variation in the yield stress and a transition to a viscoplastic material, is derived. © 2000 Elsevier Science Ltd. 
All rights reserved. 

The analysis of the stability of deformation processes with respect to a perturbation of the material 
functions is associated with the investigation of the solutions of differential equations when the 
coefficients vary [1]. Not only the constant coefficients are varied but also the functions and functionals 
which characterize the material, such as the hardening function, the creep and relaxation functionals 
and so on. Instability can be interpreted as a change of the type of boundary-value problem [2] which 
induces a qualitative change in the properties of the solution. Many classical paradoxes in mechanics 
and engineering applications (limit transitions, destabilization, spurious resonances, etc.) are also 
associated with this [3]. 

A formulation of the linearized problem of the stability of a deformation process for an incompressible 
material with linear vector relations (a problem of the first approximation) is presented below. 

1. F O R M U L A T I O N  OF T H E  S T A B I L I T Y  P R O B L E M  

We will investigate the deformation of an incompressible solid with a scalar constitutive relation, taken 
in a fairly general form 

T = T(U) (1.1) 

where r ( x ,  t) = (s: s/2) m is the maximum shear stress ( r  = ~,/~/2), and U(x, t) = (2v : v) 1/2 is the 
maximum strain rate (U = ~/(2)Uu) [4]. The hardening function T(U) of the material is continuous 
together with its first two derivatives with respect to its argument when U > 0. The vector (tensor) 
relations are assumed to be linear and, therefore, when account is taken of relation (1.1), the relation 
between the stress deviator, s, and the strain rate tensor v has the form 

s = 2 T ( U ) v / U  (1.2) 

The quantities appearing in relations (1.1) and (1.2) and all of the subsequent equations are reduced 
to dimensionless form in the basis {P; V; h}, where P is the constant density of the solids, and Vand h 
are the characteristic velocity and linear dimension, respectively. 

We will now write out, in orthogonal curvilinear coordinates, a formulation of the problem of a 
vectorially linear flow with constitutive relations (1.2) in a domain f2 of Eulerian space. The domain f2 
consists of a flow zone f2f and a rigid zone I'2r, the boundary Er of which with f~f is determined at each 
instant of time from the equation 

Z r = {x : T[U(x,t)] = "cs} (1.3) 

where x, is the shear yield stress, which is one of the mechanical constants of the material. 
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In the subdomain D~, we have the incompressibility condition 

v=O (1.4) 

and the equations of motion with the mass forces F 

-grad p + 2Div[T(U)v / U] + F = dvldt 

in which it is necessary to substitute the Stokes relations 

(1.5) 

v = D e f y  (1.6) 

in order to obtain a closed system of four equations in one vector function v(x, t) and the single scalar 
function p(x, t). 

The boundary conditions 

x ~ Y - ~ : v = u ;  x ~ Z o : - p n + s . n = P  (1.7) 

are specified, generally speaking, on the moving surfaces Fj(x, t) ~- 0, the equations of which have the 
following form 

(1.8) d[Fj (x, t)]/dt = O, x ~ Zj, j = v, 0 

If the motion of the medium is unsteady, it is also necessary to specify the initial conditions 

v(x, O)=w(x) (1.9) 

The solution of the initial-boundary-value problem of the vectorially linear flow (1.4)-(1.9) with the 
"initial data" (F; u; P; w) can only be found in the subdomain f~f of the body, which is not known 
beforehand. The surface Zr, which is defined by condition (1.3), is found when solving problem 
(1.4)-(1.9). Note that, if the latter surface is statically defineable (for example, for a quasistatic plane 
deformation of a perfect plastic solid or for pure shear of a viscoplastic solid) the stress distributions 
o(x, t) and T(x, t) which are found hold both in the subdomain D.£ as well as in the rigid zone f~,. In this 
case, the boundary Z~ can immediately be found from Eq. (1.3), and the kinematics can then be found 
in the subdomain flf which is now known. 

We assume that, for a certain fixed scalar function T°(U), the solution of problem (1.4)-(1.9) with 
the "initial data" (F; u; P; w) is known and that the equation of the surface Z ° is also known. We call 
this solution, which is subsequently labelled with a zero superscript, the main or unperturbed solution. 

Together with the main problem, we now consider problem (1.4)-(1.9) with the same "initial data" 
(F; u; P; w) but for a material with another scalar function T(U) (the perturbed problem) where 

(1.10) 

T(U) = T°(U)  + fiT(U) = T°(U)  + o~T ] (U) 

8T(U)eCO)]O;-~[ ,  (x = sup I 8T(U) I 
u > 0  

so that ITI(U) I 1. 
Regarding et as a small parameter ( e t ¢  1), we represent the solution of the perturbed problem in 

the following manner 

p(x,t) = p ° ( x , t ) + ~ p ] ( x , t )  . . . . .  s(x,t) = s°(x , t )+crs](x , t )  (1.11) 

and the equation of the surface Er, which separates the rigid zone from the flow zone in the perturbed 
process, is determined from (1.3) 

0 I Z,. = {x : T[U(x,t)] = "q. +o~%} (1.12) 

Note that 

J lim T~(U) (1 .13)  o lim T°(U),  "c.~ 
U ~ O  U---)O 
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We substitute expressions (1.11) into (1.4)-(1.9) and take account of the fact that quantities with a 
zero superscript are solutions of the main problem. On equating the coefficients of a to zero in each 
of the equations, we obtain, in De, the following, as yet unclosed initial-boundary-value problem of the 
first approximation 

t rv  1 = 0 (1.14) 

+Divs  t = ~vt +(v° ®V) .v  I +(v I ®V) .v  ° ~ g r a d  p ~ (1.15) 
dt 

v 1 = Defv 1 (1.16) 

x e Z  v :v I = 0 ;  x e Z  o:  -pJn+s I.n=O (1.17) 

vl(x, 0) = 0 (1.18) 

Next, substituting (1.11) into the non-linear constitutive relations (1.2), after some reduction we write 
the relation between the tensors s I and ~1 or the analogue of the constitutive relations of the so-called 
medium of first approximation 

T ° ( U ° ) T V ° :  v I (1.19) s,-- {oo ' +  o,(uo  U J 
V 0 2v ° ® v ° v o ® v ° 

V 02 u 0 • u 0 

The fourth-rank tensor V ° is determined by the kinematics of the main flow [5]. 
Here, account has been taken of the fact that, from the relations 

we have 

U°+otU I=U= 42(v ° + a v l ) :  (v ° +  otv')= 

l 2av°:v' ( = 4 2v° : v° I+ vO : vO +O(a  2 ) = U  ° 1+ 
2t~v ° : v I "~ 

U02 ~ + O(a 2 ) 

U I = 2 / . / 0  . /)1 
U0 (1.20) 

It follows from (1.20) that the quantity U 1 is not the maximum strain rate, constructed for the tensor 
va, and can even take negative values. 

Since a) ° and U ° are known from the basic motion, a medium of the first approximation is not only 
1 0 vectorially but also scalarly linear. This medium has initial stresses 2T (U°)'o //_]° which, after substituting 

(1.19) into (1.15) can be considered as fictitious mass forces. In the domain ~£, the system of equations 
in variables with the superscript one becomes closed. Note that second derivatives of T O with respect 
to U and first derivatives of T 1 with respect to U are introduced in (1.15). The continuity of these functions 
in f~f is previously stipulated by the classes of smoothness to which TO(U) and TI(u) belong. 

Representation (1.11) with the subsequent investigation of the initial-boundary-value problem of the 
first approximation (1.4)-(1.9) and the determination of the asymptotic boundaries of the rigid zones 
from (1.12) is a perturbation of the known solution with respect to a material function (in this case the 
hardening function of the material). The closeness in one or another sense, when t > 0, of the perturbed 
and main solutions enables us to make a judgement regarding the stability or the sensitivity of the flow 
to variations of the material functions. Concepts of such a kind can be approached by generalizing the 
classical Lyapunov-Movchan method of stability with respect to two measures [6, 7]. 

We will now give a definition of the stability of the process of deformation with respect to initial 
perturbations and a variation of a scalar function [5]. 

Definition. An unperturbed deformation process is said to be stable with respect to pairs of measures 
_{(p], pl(t)), (p~, p2(t)) . . . .  , (p~, pk(t))} and with respect to measure 7 if, for any set of positive numbers 
E = {E 1 . . . . .  Ek} , numbers 81(~:), •. •, 5k+l(e) exist such that, for any perturbed process, which satisfy 
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the inequalities 

118v(x,0)llp~ <8 I, 118o(x,0)ll~ <82 . . . . .  118Fa (x, 0) llp~ <6k, 118T(U(x,0))II <Sk+ 1 (1.21) 

when t = 0, the inequalities 

II 8v(x,t)Ilpj <e  I, II 8o-(x,t)I1~ <C 2 . . . . .  II 8Fa(x,t)IIp~. <c k (1.22) 

hold when t > 0. 
The first k inequalities in (1.21) and all of the inequalities in (1.22) set limits on the initial and actual 

perturbations of all the kinematic and dynamic parameters of the motion (all k of them), including the 
equations of the body surfaces. The last inequality sets limits on the initial perturbation of the scalar 
function of the material. By virtue of (1.10), it is necessary to select the distance in the space of the 
functions from C(1)]0; + oo[ as a measure of the deviation Y of this perturbation. 

We next present examples of problems of the first approximation for certain standard types of scalar 
functions (1.1) and perturbations (1.10). 

2. T H E  S T A B I L I T Y  OF N E W T O N I A N  F L O W S  W I T H  R E S P E C T  TO 
P E R T U R B A T I O N S  OF T H E  Y I E L D  S T R E S S  

In this case (Fig. 1) 

U ,  U 
r°(u)=~e r(u)=x.,+~e e, 8T(U)=xs 

0 I T I ( U ) - I ,  "cs=0 , x s = l ,  t ~=xs '~ l  

(2.1) 

where Re is the Reynolds number. Constitutive relations (1.19) of a medium of the first approximation 
take the form 

U U 1 ) 
s ' = 2  ~--g+ G (2.2) 

that is, the medium corresponds to a linear Newtonian model with initial stresses which are known from 
the main solution. In order to formulate the first approximation boundary-value problem, it is necessary 
to substitute relations (2.2) into (1.15) and (1.17). 

1 After determining the tensor v from this problem, we write Eq. (1.12) of the asymptotic boundary 
£r, taking account of (2.1), as 

E r = { x : 2 a v ° :  u ~ = _ U  °2} (2.3) 
Problems of viscoplastic flows degenerating into viscous flows have been investigated in detail from 

the point of view of variational inequalities [8]. The following mathematical problem has been formulated 
as an unsolved problem: " . . .  can it be proved (this is obvious from mechanical considerations) that 
domains, where the strain rates are equal to zero, become larger as the yield stress increases?" 
[8, Ch. VI, Section 5]. 

A partial answer to this question (for the case of low yield stresses) follows from Eqs (2.3). Actually, 
rigid zones, which do not exist in Newtonian flows, start to be formed around the points x e f2 at 
which U ~ and_7 ~ are equal to zero. We will denote the set of such points at each instant of time by 70(0: 
70(0 = {x e fl:  U°(x, t) = 0}. Infinitely distant points of the body can also belong to the set 70(0. Then, 
at any instant of time, the rigid zones are certain neighbourhoods of infinity. 

The asymptotic enlargement of the domains fir as xs increases is also of interest in practical problems 
involving viscoplastic flow where an exact solution for any xs is difficult. At the same time, the solutions 
of the corresponding viscous problems are well known. Such examples include the Hamel  problem of 
the radial flow of a viscous fluid in a planar convergent channel and the Karman problem (in this problem, 
an "inflow" of the medium from infinity accompanying a perturbation of the yield stress, which is well 
known in the Newtonian case, will obviously not occur since, starting from a certain height, the axis of 
rotation will belong to the rigid zone [9]). 
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T l _ h 

~'s ~ arcctg Re _-- / - -  

Fig. 1. Fig. 2. 

Below, we present an example of a purely illustrative nature where the plane-parallel shear of a heavy 
viscous layer on an inclined plane (Fig. 2) is taken as the main flow. In the Cartesian coordinates (Oxrr3), 
the known steady-state solution of the unperturbed problem has the form 

_• 0 0 v~ (x3)= x3(2-x3)sin~, v~ ~0, vaa 

U ° .... =--Re (1 - x 3)sin [3 
v°3 (x3) = 2 2 

po(X3)=(l_x3)cos~, 0 s~c L - 0 ,  s°3(x3) = T o =(1-x3)sin[~ 

The characteristic velocity V is taken to be equal to ~](gh). 
The boundary-value problem of the first approximation is formulated as follows: 

v!. = 0  

• R e  2 -p] +s!..= +Rex3(l-x3)v~81isln~+-~-x3( -x3)v]l sinl~ 
v,J ~t 

, 2 , sl 3 =l+~ee(U], 3 + vl soex = R----~v~, 3,1 ) 

x3=0 :  V] -----0, x 3 = l :  p l = s l 3 = 0  

Finding its solution in f~ in the class of plane-parallel fields (v~ = ,ol(x3), v~ =- 0), we obtain 

Re pl I = 0 ,  v~3 = = 0 ,  s l j = 0  v] (x 3) = - Re x 3, vo~ x 2 ' 

The set ~(t)  consists of the straight line x3 = 1, and the asymptotic boundary of the rigid zone is 
determined from (2.3) 

x3 = 1 - or/sin [3 (2.4) 

Hence, a rigid crust of thickness ~s in  [3 is formed close to the free boundary of the layer when there 
is a small perturbation of the yield stress. Note that the solution of the problem of viscoplastic flow 
along an inclined plane in a gravitational field, which is obtained after substitution into (1.11), as well 
as formula (2.4), are correct not just in the case of small a but for any finite a. So, if ot t> sin 13, the 
shearing forces are insufficient for deformation and the whole layer is at rest. 
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- T ( U )  

T o ( U )  

0 tt 

Fig. 3. 

3. T H E  S T A B I L I T Y  O F  P E R F E C T  R I G I D  P L A S T I C  F L O W S  
( S A I N T - V E N A N T  F L O W S )  W I T H  R E S P E C T  TO P E R T U R B A T I O N S  

O F  T H E  V I S C O S I T Y  

Suppose (Fig. 3) that 

T ° ( U ) - x ~ ,  TV(U)>0, x,.=0, U>0 (3.1) 

which corresponds to the addition of a small non-linear viscosity (hardening) in a perfect rigid plastic 
Saint-Venant model. From (1.9), we have 

s I _ 2 T l ( U ° ) v o  2x,. 
- U0 +--~--d-(A- V°): u I (3.2) 

where A is a unit fourth-rank tensor. By solving the linearized initial-boundary-value problem of the 
first approximation (1.14)-(1.18), (3.2), it is possible to find the kinematics v and the tensor ~1. However, 
the components of this tensor will not participate in expression (1.12) for the asymptotic boundary Er. 
In fact, substituting relations (3.1) into Eq. (1.12), we have 

Y.r={X: TI(U°)=0}={x:  U°=0} (3.3) 

that is, on passing from the unperturbed motion (Saint-Venant flow) to the perturbed equation of the 
boundaries of the rigid zones, they remain the same. 

As in Section 2, the problem of the first approximation is of interest in well-known classical solutions 
for a perfect rigid plastic medium. The solutions of many of the quasistatic problems which have been 
collected together in [10] are included among such classical solutions. These flows simulate the processes 
involved in the treatment of material with pressure, motions over surfaces, in thin films, etc. [11]. 
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